Coincidence for Substitutions of Pisot Type
نویسندگان
چکیده
— Let φ be a substitution of Pisot type on the alphabet A = {1, 2, . . . , d}; φ satisfies the strong coincidence condition if for every i, j ∈ A, there are integers k, n such that φn(i) and φn(j) have the same k-th letter, and the prefixes of length k − 1 of φn(i) and φn(j) have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if d = 2 and provide a partial result for d ≥ 2. Résumé (Cöıncidence pour les substitutions de type Pisot). — Soit φ une substitution de type Pisot sur un alphabet A = {1, 2, . . . , d} ; on dit que φ satisfait la condition de cöıncidence forte si pour tout i, j ∈ A, il existe des entiers k, n tels que φn(i) et φn(j) aient la même k-ième lettre et les préfixes de longueur k − 1 de φn(i) et φn(j) aient la même image par l’application d’abélianisation. Nous montrons que la condition de cöıncidence forte est satisfaite pour d = 2 et nous donnons un résultat partiel pour d ≥ 2. A substitution φ on a finite alphabet A = {1, 2, . . . , d} satisfies the strong coincidence condition if for every i, j ∈ A, there are integers k, n such that (i) φ(i) and φ(j) have the same k-th letter and Texte reçu le 21 novembre 2001, accepté le 14 mai 2002 Marcy Barge, Department of Mathematics, Montana State University, Bozeman MT 59717 (USA) • E-mail : [email protected] Beverly Diamond, Department of Mathematics, College of Charleston, Charleston SC 29424 (USA) • E-mail : [email protected] 2000 Mathematics Subject Classification. — 37B10.
منابع مشابه
Homological Pisot Substitutions and Exact Regularity
We consider one-dimensional substitution tiling spaces where the dilatation (stretching factor) is a degree d Pisot number, and the first rational Čech cohomology is d-dimensional. We construct examples of such “homological Pisot” substitutions whose tiling flows do not have pure discrete spectra. These examples are not unimodular, and we conjecture that the coincidence rank must always divide ...
متن کاملGeometric Models of Pisot Substitutions and Non-commutative Arithmetic
Unimodular Substitutions on 2 letters. Conjecture: the dynamical system associated with a primitive substitution on 2 letters, with matrix in SL(2,Z), is measurably isomorphic to a circle rotation. There is a very convenient criterium, due to B.Host: Definition: the substitution σ has strong coincidence if there exists n and k such that σ(0) and σ(1) have same letter of index k, and the 2 prefi...
متن کاملCOINCIDENCE FOR SUBSTITUTIONS OF PISOT TYPE by Marcy Barge &
— Let φ be a substitution of Pisot type on the alphabet A = {1, 2, . . . , d}; φ satisfies the strong coincidence condition if for every i, j ∈ A, there are integers k, n such that φn(i) and φn(j) have the same k-th letter, and the prefixes of length k − 1 of φn(i) and φn(j) have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if d = 2 an...
متن کاملA combinatorial approach to products of Pisot substitutions
We define a generic algorithmic framework to prove pure discrete spectrum for the substitutive symbolic dynamical systems associated with some infinite families of Pisot substitutions. We focus on the families obtained as finite products of the three-letter substitutions associated with the multidimensional continued fraction algorithms of Brun and Jacobi-Perron. Our tools consist in a reformul...
متن کاملPisot substitutions and their associated tiles par
Let σ be a unimodular Pisot substitution over a d letter alphabet and let X1, . . . , Xd be the associated Rauzy fractals. In the present paper we want to investigate the boundaries ∂Xi (1 ≤ i ≤ d) of these fractals. To this matter we define a certain graph, the so-called contact graph C of σ. If σ satisfies Manuscrit reçu le 17 novembre 2004. The author was supported by project S8310 of the Au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002